跳到主要内容

ResNet 网络结构

ResNet 的残差结构

基本残差块

  • BasicBlock 经过两个 3x3 的卷积层,再与输入相加后激活输出

  • BottleNeck 用于更深层的 resnet 网络,先经过一个 1x1 、一个 3x3 的卷积层后,再通过一个 1x1 的卷积层改变通道数,再与输入相加后激活输出


ResNet 网络

ResNet 的网络结构就是通过基础残差块叠加来搭建


PyTorch 实现 ResNet

基础模块

1x1 卷积块

Conv2D_1x1
def conv1x1()
def conv1x1(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes,
out_planes,
stride=stride,
kernel_size=1,
bias=False)

3x3 卷积块

Conv2D_3x3
def conv3x3()
def conv3x3(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=1,
bias=False)

BasicBlock 残差块

BasicBlock
class BasicBlock(nn.Module)
def __init__()
def forward()
class BasicBlock(nn.Module):
expansion = 1

def __init__(self, in_planes, planes, stride=1, down_sample=None):
super(BasicBlock, self).__init__()
self.conv_1 = conv3x3(in_planes, planes, stride)
self.bn_1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU()
self.conv_2 = conv3x3(planes, planes)
self.bn_2 = nn.BatchNorm2d(planes)
self.down_sample = down_sample
self.stride = stride

def forward(self, x):
identity = x

out = self.conv_1(x)
out = self.bn_1(out)
out = self.relu(out)
out = self.conv_2(out)
out = self.bn_2(out)
if self.down_sample is not None:
identity = self.down_sample(x)

out += identity
out = self.relu(out)

return out

BottleNeck 残差块

BottleNeck
class BottleNeck(nn.Module)
def __init__()
def forward()
class BottleNeck(nn.Module):
expansion = 4

def __init__(self, in_planes, planes, stride=1, down_sample=None):
super(BottleNeck, self).__init__()
self.conv_1 = conv1x1(in_planes, planes)
self.bn_1 = nn.BatchNorm2d(planes)
self.conv_2 = conv3x3(planes,
planes,
stride=stride)
self.bn_2 = nn.BatchNorm2d(planes)
self.conv_3 = conv1x1(planes, planes * 4)
self.bn_3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU()
self.down_sample = down_sample
self.stride = stride

def forward(self, x):
identity = x

out = self.conv_1(x)
out = self.bn_1(out)
out = self.relu(out)

out = self.conv_2(out)
out = self.bn_2(out)
out = self.relu(out)

out = self.conv_3(out)
out = self.bn_3(out)

if self.down_sample is not None:
identity = self.down_sample(x)

out += identity
out = self.relu(out)

return out

网络堆叠

class ResNet(nn.Module)
def __init__()
def _make_layer()
def forward()

网络层数通过 layers[] 进行设置

def __init__(self, block, layers, num_classes = 1000):
self.in_planes = 64
···
self.layer_1 = self._make_layer(block, 64, layers[0])
self.layer_2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer_3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer_4 = self._make_layer(block, 512, layers[3], stride=2)
···
def _make_layer(self, block, planes, blocks, stride=1):
···
layers = []
layers.append(block(self.in_planes, planes, stride, down_sample))
self.in_planes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.in_planes, planes))

return nn.Sequential(*layers)
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes = 1000):
self.in_planes = 64
super(ResNet, self).__init__()
self.conv_1 = nn.Conv2d(3,
64,
kernel_size=7,
stride=2,
padding=3,
bias=False)
self.bn_1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU()
self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer_1 = self._make_layer(block, 64, layers[0])
self.layer_2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer_3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer_4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)

for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
nn.init.uniform_(m.weight, 0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)

def _make_layer(self, block, planes, blocks, stride=1):
down_sample = None
if stride != 1 or self.in_planes != planes * block.expansion:
down_sample = nn.Sequential(
nn.Conv2d(self.in_planes,
planes * block.expansion,
kernel_size=1,
stride=stride,
bias=False),
nn.BatchNorm2d(planes * block.expansion),
)

layers = []
layers.append(block(self.in_planes, planes, stride, down_sample))
self.in_planes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.in_planes, planes))

return nn.Sequential(*layers)

def forward(self, x):
x = self.conv_1(x)
x = self.bn_1(x)
x = self.relu(x)
x = self.max_pool(x)

x = self.layer_1(x)
x = self.layer_2(x)
x = self.layer_3(x)
x = self.layer_4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)

return x

构建网络

def resnet18()
layers:[2, 2, 2, 2]
def resnet34()
layers:[3, 4, 6, 3]
def resnet50()
layers:[3, 4, 6, 3]
def resnet101()
layers:[3, 4, 23, 3]
def resnet18():
model = ResNet(BasicBlock, [2, 2, 2, 2])
return model


def resnet34():
model = ResNet(BasicBlock, [3, 4, 6, 3])
return model


def resnet50():
model = ResNet(BottleNeck, [3, 4, 6, 3])
return model


def resnet101():
model = ResNet(BottleNeck, [3, 4, 23, 3])
return model

完整代码地址

参考